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LIQUID CRYSTALS, 1986, VOL. 1, No. 3, 271--280 

The determination of the viscosity coefficients of 
nematic liquid crystals 

by G. J. O’NEILLt 
Department of Mathematics, University of Strathclyde, 

Glasgow G1 lXH, Scotland 

(Received 18 November 1985; accepted 15 March 1986) 

This paper considers the flow generated by driving a sample of nematic liquid 
crystal through a rectangular capillary by application of a small pressure gradient 
in the presence of a large aligning magnetic field. A theoretical calculation based 
on the continuum theory of nematics is presented which makes some allowance for 
non-uniform alignment induced by flow, and allows a more accurate determi- 
nation of the viscosities corresponding to the three principal configurations in the 
plane of shear. 

The continuum theory proposed by Ericksen [l] and Leslie [2] describes many 
of the physical properties of nematic liquid crystals rather well (see for example 
Chandrasekhar [3], Leslie [4] and de Jeu [5]). The theory contains six viscosity 
coefficients in the dissipative part of the stress tensor; these are commonly denoted by 
u,  , . . . , a6. Leslie [4,6] has derived inequalities upon these coefficients necessary to 
ensure that entropy production is positive. Parodi [7] has imposed a further restriction 
upon the us in the shape of an Onsager relation 

a6 - us = u3 + a2, (1) 
which reduces the number of independent coefficients to five, and Currie [8,9] has 
presented arguments which support the need for this condition. In a more recent 
paper, Vertogen [ 101 has presented an alternative derivation of the nematic theory 
that contains five independent viscosity coefficients consistent with previous argu- 
ments. However, he makes the additional assumption that the stress is derivable from 
a dissipation function, and that this should essentially produce the Parodi relation is 
a result anticipated by Ericksen [ 1 11. It is of interest to determine the values of these 
coefficients for various nematic materials. In addition, applications in electro-optic 
display devices clearly demonstrate the need for detailed information concerning these 
viscosity coefficients, this being essential for a complete understanding of the complex 
coupling between flow and alignment in transient processes in liquid crystal cells. 

Most experimental techniques designed to measure the viscosities of nematics 
employ various means to align the sample in the different directions relative to the 
flow. Externally applied electromagnetic fields exert body torques which tend to align 
the director either parallel or perpendicular to the direction of the field. In the absence 

f Present address: Centre for Computer Science, Department of Science and Technology, 
Chr. Michelsen Institute, Fantoftvegen 38, N-5036 Fantoft Bergen, Norway. 
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272 G .  J. O’Neill 

of field effects it is observed that for most nematic liquid crystals the flow itself tends 
to align the bulk of the sample at a given angle (0,) to the streamlines. However, there 
are materials which do not flow align over their entire nematic temperature range 
[12-141 and this results in a rich variety of flow induced instabilities (see, for example, 
Clark et al. [ 151). Finally by prior treatment of the bounding surfaces it is possible to 
dictate particular orientations of the director at such boundaries, and these appear 
relatively insensitive to the presence of other aligning influences. It is usually assumed 
in such viscometric experiments that an electromagnetic field when present assumes 
the dominant role, being sufficiently strong to align the sample completely in the 
required direction. A test of sufficient strength is that the values of the coefficients 
obtained approach some limit as the magnitude of the field is increased. However in 
practice this is not always the case, boundary and end effects may be significant. These 
depend upon the geometry and dimensions of the experimental apparatus in use. In 
addition, the applied fields, although large, are finite and the lack of related theoretical 
calculations to guide extrapolation of experimental data makes interpretation of the 
results uncertain. Consequently the literature contains a rather wide spread of values 
for the viscosity coefficients. 

Figure 1. Illustration of the flow considered. A pressure gradient a = ( p ,  - p2) /L  > 0 
(where L is the length of the capillary) drives the sample of nematic. A strong magnetic 
field at a constant angle 4 (E [0, 421)  to the flow aligns the anisotropic axis. 

Of the classical viscometric flows perhaps the simplest is that of plane Poiseuille 
flow, where the fluid is driven through a rectangular capillary by an applied pressure 
gradient and the flux of fluid over a certain time interval is measured (see figure 1). 
The viscosity i j  is then defined in a very natural way by the relation 

2ad3 i j = -  
3Q * 

Here a is the presure gradient, d half the gap width and Q the constant flux per unit 
time per unit breadth given by 

where v(z) is the velocity in the direction of a and z the coordinate normal to the 
plates. 
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Viscosity coeficients of nematics 273 

e = o  

n e = -  
4 

1 
2 q 3  = - a4 

Figure 2. Configurations corresponding to the four principal viscosities: (a), (b), ( c )  in the 
plane of the flow and ( d )  normal to this plane. Associated viscosities are given in the 
notation of Helfrich [16]. 

In an identical way a sample of nematic may be subject to such a flow. In this case, 
when the director is uniformly aligned in the plane of shear at an angle 8 to the lower 
boundary (see figure 2 (a)) the viscosity is given by g(8), where 

2g(6) = 2a,sin28cos20 + (a5 - a2)sin20 + ( a j  + a,)cos28 + a,. (4) 

Three measurements in the plane of the flow (see figure 2 (a),  (b), (c))  can be taken to 
determine various combinations of the as. With the director oriented normal to this 
plane (figure 2 ( d ) )  the a, coefficient may be evaluated. Note that this latter configur- 
ation is unstable above a critical pressure gradient, as discussed by Janossy et al. [17]. 
Henceforth let us restrict attention to the in-plane alignments. Finally it can be shown 
[4] that provided the material flow aligns, the flow alignment angle O0 is related to the 
as through 

tl 
tan2O0 = 2. 

a2 
( 5 )  

This angle may be determined from optical checks on the alignment of the director 
of the nematic material subject to such a flow and gives the fifth equation from which 
the viscosity coefficients are readily calculated. As with isotropic fluids, the quantity 
that is measured experimentally is the flux per unit time and this may be written in 
terms of the various material parameters of the theory. The apparatus is calibrated 
with liquids of known viscosity and in this case ij in expression (2) essentially defines 
the apparent or effective viscosity of the fluid, and is the value actually measured. For 
a uniformly aligned sample of nematic, the viscosity corresponding to a given con- 
figuration will be identically equal to ij. However for large but finite applied fields 
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274 G. J. O’Neill 

Table 1. Comparison of anisotropic viscosities of MBBA at - 25°C. 

Investigator ? I  /cp V2ICP M I  = VI*/CP 
(method) e = 4 2  o = o  0 = a14 

Gahwiller [18,19] 103.5 f 1.5 23.8 f 0.3 6.5 f 4 
(capillary flow) 

Summerford et al. [24] 
(shear stress measurements 
on a suspended plate) 

- - 138 f 3 

- - Martinoty and Candau - 21 
~ 5 1  
(reflexion of ultrasonic 
shear waves) 

Kneppe and Schneider [22] 136.1 
(capillary flow) 

23.9 - 18.1 

Kneppe et al. [26] 135.5 23.9 - 18.1 
(rotating magnetic field 
plus results of [22]) 

there is an error due to the non-uniformity of the director, and this we endeavour to 
quantify. 

Gahwiller [12,18,19] was the first to obtain a complete set of values of the 
coefficients by this method. More recent attempts using variants of the above include 
those of Skarp et al. [20], Kim et al. [21], Kneppe and Schneider [22] and Beens and 
de Jeu [23]. 

For the nematic 4-methoxybenzylidene-4’-n-butylaniline (MBBA) the results of 
several investigations by a variety of techniques are given fn table 1. Using the 
attenuation of ultrasound, Martinoty and Candau [25] actually measured the quantity 

0 2  = q 2  - 
u2 u3 -tan2 e,, 
Y1 

where y I  = u3 - u2.  Since the flow alignment angle for MBBA at 25°C is approxi- 
mately 6” [12,27] it follows that jj2 is a good estimator of q2 in this case. The results 
of Kneppe et al. [26] were obtained by application of a rotating magnetic field 
to determine y I  . Using the values of q2 from [22] and 0, from [27] they calculate qI 
through the relation 

(VI - ~2)COS2~ll = 71, (7) 
thus avoiding the uncertainty of a direct measurement of the qI coefficient. As is 
evident from table 1, there is good agreement in the results for q2 .  However for q1 (see 
figure 2 (a)) and ul there is a marked disparity. The latter viscosity is determined from 
the algebraic equation 

a1 = 4%,4 - 2(Vl + V Z ) ,  (8) 
and so the accuracy of the result is highly dependent on the estimate of q l .  The 
variation in the yll  values quoted in the table is essentially the reason for the disagree- 
ment in the u1 coefficient. Doubt as to the validity of Gahwiller’s results for q1 were 
raised initially by Summerford et al. [24] and discussed more fully by de Jeu [28]. They 
argue that for the pressure gradients used by Gahwiller (4&200 dyn ~ m - ~ ) ,  the 
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Viscosity coeficients of nematics 275 

applied magnetic fields (up to 6kG) are insufficient to overcome the strong flow 
aligning effects and orient the anisotropic axis parallel to the direction of the field. 
Since the flow alignment angle for this temperature is of the order of 6”, when 
measuring q2 (see figure 2(b)),  viscous and field effects tend to compete weakly. 
However as 8 increases, so the field strengths, required to dominate the large viscous 
torques present, must also increase. The smaller value of q1 obtained by Gahwiller 
would tend to support the idea that even for a magnetic field of 6 kG, the director in 
this experiment is aligned at an angle somewhat less than 4 2  radians to the flow. Here 
we present a theoretical calculation to resolve this discrepancy. 

Consider the arrangement illustrated in figure 1. The sample of nematic is con- 
tained between two parallel semi-infinite plates of gap width 2d. A pressure gradient 
a drives the flow in one direction, and a magnetic field H is applied in the plane of 
shear at a constant angle 4(~[O,n/2]) to the lower boundary. As Raynes et al. [29] 
describe, it is feasible to arrange the inclination of the optic axis on a solid surface at 
any prescribed angle. Thus by setting boundary conditions on the director compatible 
with the orientation of the field, it is possible to isolate the competition between the 
flow and the magnetic field to align the director. In practice, the effect of a strong 
anchoring boundary condition is confined to within two thin transition regions near 
the solid surfaces. Gahwiller [19] finds that the thickness of these layers for his 
experiments is between 3 per cent and 6 per cent (for ql with an applied field of 9 kG) 
of the plate separation. However, Beens and de Jeu [23] demonstrate that this 
boundary layer effect is rather important in the measurement of q l .  The appropriate 
form of the continuum equations describing the spacial variation of the director and 
the velocity (assuming steady flow) is written as 

2am(8) z + xaH2sin2(6 - 0) = 0, (9 a) df 2 f ( e )e”  + - e r 2  + 
d8 

- az 
v’(z) = - 

g(8 )  ’ 
where 

f ( 8 )  = klc0s28 + k,sin28, (10 4 
m(e) = a,cos28 - a2sinz8 (10 b) 

and g(8) is given by expression (4). za in equation ( 9 4  represents the diamagnetic 
anisotropy, which is taken to be constant and positive, while k ,  and k, in equation 
(10 a) are the splay and bend elastic constants respectively. All primes denote dif- 
ferentiation with respect to z .  For boundary conditions take 

e ( - d )  = 8(d) = 4, 
V ( - d )  = v ( d )  = 0, 

the latter being the familiar no-slip assumption on the velocity. One basic solution to 
equations (9) and (1 1) for all values of 4, is the uniform equilibrium state 

8 = 4, v = 0 ( a  = 0),  (12) 

in which there is no flow, and the director is aligned parallel to the applied field. By 
solving the corresponding linearized version of equations (9) it may be shown that for 
sufficiently small a and large H (= 1 H 1, the magnitude of the field), an appropriate 
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276 G.  J. O’Neill 

form of solution is given by 

[ z sinh ( < z / d ) ]  
+(z)  = 6 - - 

d sinh< 

and the velocity assumes a parabolic profile 

Here the dimensionless quantities 5 and 6 are of the form 

Integration of expression ( 3 )  by parts once, and use of boundary conditions (1 1) yields 
d 

Q = - 1 zv’(z)dz. 
- d  

If one substitutes equation (9b) into equation (16), the flux may be written as 

We expand g(8) in a three term Taylor series about the uniform state 8 = 4 

and since dg/d81,=, is zero for 4 = 0, 742, approximate (18) by the two term trun- 
cated series 

If expressions (19) are substituted into the integrand of equation (1 7), together with 
the form of @(z)  given in equation (13 b), evaluation of the integral neglecting terms 
whose magnitude is O(<-l) or less in the limit as < + co, leads to 
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Viscosity coejicients of nematics 277 

where y2  = 
and (20) it follows that 

- a5 (= a3 + a2 by equation (1)). Finally, combining equations (2) 

6a2[aI cos 44 - ~2 cos 241 
9 4 = 0, 4 2 ,  

9 4 # 0, 4 2 .  
(21) 

g ( 4 )  ? - 1  5 d 4 )  
rl 36[al sin 44 - 2y2 sin 241 

W 4 )  
Thus to our approximation this yields a quadratic equation in g ( 4 )  

52(4) - 5g(4)ij  + 6 6 2 [ ~ 1 ~ ~ ~ 4 4  - ~ 2 ~ 0 ~ 2 4 1 i j  = 0, 4 = 0, n/2, 

Sg’(4) - Sg(4)ij + 36[alsin44 - 2y2sin2#J]ij = 0, #J # 0, n/2, 

and the appropriate root is given by 

5ij + J(25ij2 - 1 2 0 6 2 [ a I ~ ~ ~ 4 4  - ~ 2 ~ 0 ~ 2 4 1 i j )  
10 , 4 = 0, 7d2, (234  

, 4 # 0, 4 2 .  (23b) 

g ( 4 )  = 

g ( 4 )  = 
86 + J{64ij2 - 966[aIsin4#J - 2y2sin24]ij) 

16 

It is worth noting at this stage that for a given pressure gradient, as H + 00, then 
5 + 00 and 6 + 0. From equations ( 1  3) and (21) or (23) we conclude that in this limit 

representing a uniformly aligned sample parallel to the field H. In addition, by setting 
4 = 8, (when this angle exists), it is clear from equations (5) and (10 b) that m(4)  EE 0 
and so from expression (15 b), 6 3 0, again reproducing the result in equation (24). 
This is not surprising since in this case flow, field and surface influences all tend to 
align the anisotropic axis in the same direction. 

Expressions (2 I)  enable the calculation of the extrapolation factor in measuring 
any of the in-plane viscosities to be made, and using this, provided it is sufficiently 
small, to approximate the limiting value of the viscosity. However to compute these 
extrapolation factors, estimates of the as are required. We suggest the following 
approach. For a strong magnetic field and small pressure gradient, the viscosity 
function g(#J)  will be constant to leading order and given in terms of the flux Q by 
expression (2). The four measurements corresponding to figures 2 (a)-(d) are taken, 
resulting in four algebraic equations for the as. Combine these with the Parodi 
relation (1) and a measurement of the flow alignment angle (cf. equation ( 5 ) )  in the 
absence of the field. Solving these six equations gives to the same order of magnitude, 
estimates for a,, . . . , as and these may be used in the evaluation of the extrapolation 
factors. The latter are then applied to refine the original estimates via equations (21). 
From physical reasoning it is expected that for a given field strength and pressure 
gradient, the largest error associated with the non-uniform alignment of the director 
to correspond to the case of 4 = 7r/2 (ql configuration). However from equations (21), 
this is seen not to be the case, since, for 6 << 1 ,  d2 << 6 and so intermediate values of 
4 produce the greatest error. This results from the original series truncation in 
(19) since the first derivative of g(B) vanishes at B = 0, n/2. Therefore, to extrapolate 
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278 G. J. O’Neill 

Table 2. For a typical pressure gradient of 140d~ncm-~ ,  and an aligning field of 6kG, the 
errors (from expressions (21 a) and (21 b)) associated with measuring the three principal 
in-plane viscosities are listed. A negative sign indicates that the measured value of the 
viscosity is lower than the actual value (calculations based on the data and experimental 
details supplied in [12,18,19]). 

-~ 

Angle of field 
& = O  

7l 4 = -  
4 

0.006 

36[c(, sin44 - 2y2 sin 241 - 

Q(4) 

- - 

0.433 

- 0.284 

- 

in a meaningful way for 4 E (0, 7r/2), a, d and H must be such that 

Table 2 lists the errors associated with measuring the three principal in-plane vis- 
cosities for a typical pressure gradient of 1 4 0 d y n ~ m - ~  and an aligning field of 6 kG 
(the maximum applied in the Gahwiller experiments). Clearly for qz the error is less 
than 1 per cent and consequently the value quoted for this coefficient is in excellent 
agreement with the results of the other investigations. However this is not the case 
with ql and v ~ , ~ .  For the latter viscosity, the magnitude of the error is too large to 
satisfy condition (25). When d, = 4 2 ,  i j  = 103.5 [18] and a more accurate estimate 
of q,  may be obtained from equation (23 a) 

5ij + ,/(25ij2 - 12062[a, + y 2 ] i j }  
10 ?I = I 

= 127.4cP. (26) 

This calculation was based on the values of viscosity coefficients supplied in [18]. The 
result is more in accord with the outcome of the Kneppe and Schneider experiment. 
Their value of 136.1 CP is not reproduced exactly in this calculation for essentially two 
reasons. Firstly, the flow rates used by Gahwiller are up to six times larger than those 
of Kneppe and Schneider and for these larger flow rates, the assumptions (a small, H 
large) on which our analysis is based are only approximately satisfied. Hence the 
extrapolation factor of - 0.284 (table 2) is large in magnitude. Secondly, there is an 
error associated with truncating the Taylor series for g(0) in equation (19 a), although 
this latter effect is less marked. 

Similarly the extrapolation factors may be calculated from equation (2 1) for the 
experiment of Kneppe and Schneider. For a typical pressure gradient of 50 dyn ~ m - ~ ,  
the extrapolation factor in measuring ql  (with a 6 kG field) is of the order of 9 per cent, 
consistent with their claim. They present a related calculation (not based on the 
continuum theory) to enable them to approximate the viscosities in the limit of infinite 
magnetic induction. 

Finally, for a given calibration error of 10 per cent, table 3 lists the minimum field 
and maximum pressure gradient allowable to sustain the alignment of the director in 
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Viscosity coeficients of nematics 279 

Table 3. Minimum field (a = 140dyncm-’) and maximum pressure gradient (H = 6kG) 
for a given calibration error of 10 percent. Calculations based on details supplied in [19]. 

Angle of field 
f $ = o  

A $ I = -  
4 

A $ I = -  
2 

Minimum field/kG 
a = 140dyncm-’ 

2.950 12.480 7.790 

Maximum pressure gradient 580 33 83 
( d y n ~ m - ~ )  
H = 6 k G  

the three configurations within the plane of the flow. These are calculated once again 
from expressions (21). Under the experimental conditions described by Gahwiller, q2 
is determined to within the required accuracy, while q1 and qniq are clearly not. 

The author gratefully acknowledges the support of the Procurement Executive, 
U.K. Ministry of Defence, and the S.E.R.C. through the award of a Postgraduate 
Studentship. He also thanks Professor F. M. Leslie and Dr. M. G. Clark for both 
interesting and helpful discussions on the subject matter of this paper. 
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